Differential Gene Expression of Resistant and Susceptible Sweetpotato Plants after Infection with the Causal Agents of Sweet Potato Virus Disease

Author:

McGregor Cecilia E.,Miano Douglas W.,LaBonte Don R.,Hoy Mary,Clark Chris A.,Rosa Guilherme J.M.

Abstract

Sweet potato virus disease (SPVD) is one of the most devastating diseases affecting sweetpotato (Ipomoea batatas), an important food crop in developing countries. SPVD develops when sweetpotato plants are dually infected with sweet potato feathery mottle virus (SPFMV) and sweet potato chlorotic stunt virus (SPCSV). To better understand the synergistic interaction between these viruses, global gene expression was previously studied in the susceptible cultivar Beauregard. In the current study, global gene expression between SPVD-affected plants and virus-tested control plants (VT) were compared in ‘Beauregard’ (Bx) and resistant ‘NASPOT 1’ (Nas) sweetpotato cultivars at 5, 9, 13, and 17 days post inoculation (DPI). Titer levels of SPFMV and SPCSV were significantly lower in inoculated resistant plants (Nas_SPVD) than in susceptible plants (Bx_SPVD) at most of the time points. Chloroplast genes and cell expansion-related genes (including xyloglucan endotransglucosylase/hydrolases) were suppressed in Bx_SPVD, while stress-related genes were induced. This trend was not observed in resistant NAS_SPVD. Genes related to protein synthesis (e.g., ribosomal proteins and elongation factor genes) were induced in resistant NAS_SPVD at 5 DPI before returning to levels comparable with NAS_VT plants. At this time (5 DPI), individual viruses could not be detected in NAS_SPVD samples, and no symptoms were observed. Induction of protein synthesis-related genes is common in susceptible plants after virus infection and is generally in proportion to virus accumulation. Our results show that induction of protein synthesis genes also occurs early in the infection process in resistant plants, while virus titers were below the level of detection, suggesting that virus accumulation is not required for induction.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3