Sulfur Deprivation and Genotype Affect Gene Expression and Metabolism of Onion Roots

Author:

McCallum John A.,Pither-Joyce Meeghan,Shaw Martin

Abstract

Genetic and environmental factors affect onion (Allium cepa L.) pungency but the molecular basis for this variation is not understood. To initiate molecular analysis of onion sulfur metabolism we isolated cDNAs from onion associated with sulfur assimilation and compared gene expression and sulfur metabolism of mild and pungent onion cultivars. We isolated cDNAs encoding homologues of 5'adenosine-phosphosulfate (APS) reductase, γ-glutamylcysteine synthetase and serine acetyl transferase using a homology-based RT-PCR approach. Homologues of high-affinity sulfate transporters and sulfite reductase were isolated from an onion root differential cDNA library enriched for genes up-regulated by 48 hours sulfur deprivation. The influence of genotype and sulfur nutrition on root expression of selected genes was measured in an experiment in which a low pungency onion cultivar (`Houston Grano') and a high pungency cultivar (`Canterbury Longkeeper') were grown hydroponically in low (0.1 meq·L-1) or high (4.0 meq·L-1) sulfate medium and harvested before bulbing. `Canterbury Longkeeper' contained higher concentrations of (+)-S-methyl-L-cysteine sulfoxide in leaf and root than `Houston Grano' but cultivars did not differ in leaf trans-(+)-S-(1-propenyl)-L-cysteine sulfoxide concentrations. `Houston Grano' accumulated significantly higher concentrations of total N, nitrate, and basic amino acids in leaves and roots, suggesting these cultivars differ markedly in maintenance of S/N homeostasis. Steady-state transcript levels of APS reductase and high-affinity sulfate transporter in roots were significantly higher (2- to 3-fold) at low sulfate. By contrast, steady state levels of ATP sulfurylase transcript were significantly higher at high sulfate levels and in `Canterbury Longkeeper'. We conclude that differences in regulation of the sulfur assimilation pathway may underlie genetic differences in pungency.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3