Author:
Wang Zhongchun,Stutte Gary W.
Abstract
Greenhouse grown 2-year-old potted `Jonathan' apple trees (Malus domestica Borkh.) were subjected to various levels of water stress in February. Midday leaf water potential (ψW), leaf osmotic potential (ψS), soluble sugars, and starch contents of mature leaves were measured throughout the development of water stress to determine whether active osmotic adjustment could be detected and whether carbohydrates were involved. Active adjustments of 0.6 MPa were observed 3 and 5 days, respectively, after water stress was initiated. Leaf turgor potential (ψP) could not be maintained through the osmotic adjustment when ψW dropped below -1.6 MPa. Sorbitol, glucose, and fructose concentrations increased while sucrose and starch levels decreased significantly as water stress developed, strongly suggesting that sugar alcohol and monosaccharide are the most important osmotica for adjustment. Sorbitol was a primary carbohydrate in the cell sap and accounted for > 50% of total osmotic adjustment. The partitioning of newly fixed W-labeled photosynthates in mature leaves was not affected by water stress immediately after the 30-min 14CO2 treatment. All the W-labeled carbohydrates decreased in the labeled leaves very rapidly after 14CO2 labeling. The decrease in 14C-sorbitol was greater than the decrease in other carbohydrates under both well-watered and stressed conditions. After 24 hours of water stress, however, the percentage of 14C-sorbitol increased while the percentages of sucrose, starch, glucose, and fructose decreased significantly with increasing levels of stress. The ratio of 14C-sorbitol in leaves with ψW = -3.5 MPa to leaves with ψW = -0.5 MPa was significantly higher than that of 14C-sucrose, 14C-glucose, W-fructose, or 14C-starch.
Publisher
American Society for Horticultural Science
Cited by
134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献