Author:
Elia Frank M.,Hosfield George L.,Kelly James D.,Uebersax Mark A.
Abstract
A knowledge of the relative proportion of additive and nonadditive genetic variances for complex traits in a population forms a basis for studying trait inheritance and can be used as a tool in plant breeding. A North Carolina Design II mating scheme was used to determine the inheritance of cooking time, protein and tannin content, and water absorption among 16 genotypes of dry bean (Phaseolus vulgaris L.) representative of the Andean Center of Domestication. Heritability and the degree of dominance for the traits were also calculated to provide guidelines for adopting breeding strategies for cultivar development. Thirty-two progeny resulted from the matings and these were assigned to two sets of 16 progeny each. Variances due to general combining ability (GCA) and specific combining ability (SCA) were significant for the traits. The GCA was larger in all cases. Narrow-sense heritability for protein, tannin, water absorption, and cooking time averaged 0.88, 0.91, 0.77, and 0.90, respectively. Degree of dominance estimates indicted that the traits were governed by genes with partial dominance except, in one case, tannin had a degree of dominance value of zero, indicating no dominance. The phenotypic correlation (-0.82) between water absorption and cooking time justifies using the water absorption trait as an indirect selection method for cooking time. With regard to parent selection in crosses, significant differences between GCA females and GCA males suggested cytoplasmic influences on trait expression. Hence, the way a parent is used in a cross (i.e., as female or male) will offset trait segregation. Using fast-cooking bean cultivars in conjunction with fuel-efficient cooking methods may be the best strategy to conserve fuelwood and help reduce the rate of deforestation in East and Central Africa.
Publisher
American Society for Horticultural Science
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献