Response to Phosphorus Availability during Vegetative and Reproductive Growth of Chrysanthemum: II. Biomass and Phosphorus Dynamics

Author:

Hansen Conny W.,Lynch Jonathan

Abstract

Whole-plant biomass accumulation, P dynamics, and root-shoot interactions during transition from vegetative to reproductive growth of `Coral Charm' chrysanthemum (Dendranthema ×grandiflorum Ramat.) (Zander, 1993) were investigated over a range of P concentrations considered to be deficient (1 μm), adequate (100 μm), and high (5 mm). In nondeficient plants, transition from vegetative to reproductive growth resulted in reduced relative growth rate and root and shoot biomass accumulation. Reproductive plants showed a higher commitment of the whole plant to the production of developing flowers than to leaves and roots, whereas, in vegetative plants, the highest component production rate was in leaves. This indicates changes in the source-sink relationships during transition from vegetative growth making developing flowers stronger sinks for photoassimilates than roots. Phosphorus allocated to developing flowers was predominantly lost from leaves. Phosphorus-deficient plants showed characteristic P-deficiency symptoms and favored root growth over shoot growth regardless of growth stage. Phosphorus availability in nondeficient plants affected root growth more than shoot growth. No substantial differences in shoot biomass production, relative growth rate, and CO2 assimilation rates were observed in adequate-P and high-P plants. However, the root component production rate, root to shoot ratio, root length ratio, specific root length, specific root area, root mass to leaf area ratio, and root respiration increased in adequate-P plants compared with high-P plants, which indicates that high root activity was maintained without affecting shoot biomass in buffered P conditions. Our results suggest that the high P concentrations used in many horticultural systems may have no benefit in terms of shoot growth and may actually be detrimental to root growth.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3