Substrate Acidification by Geranium: Light Effects and Phosphorus Uptake

Author:

Taylor Matthew D.,Nelson Paul V.,Frantz Jonathan M.

Abstract

Sudden pH decline (SPD) describes the situation where crops growing at an appropriate pH rapidly (within 1–2 weeks) cause the substrate pH to shift downward one to two units. ‘Designer Dark Red’ geraniums (Pelargonium ×hortorum Bailey) were grown in three experiments to assess possible effects of light on SPD and phosphorous (P) uptake. The first experiment tested the effect of four light intensities (105, 210, 575, and 1020 ± 25 μmol·m−2·s−1) on substrate acidification. At 63 days, substrate pH declined from 6.0 to 4.8 as light intensity increased. Tissue P of plants grown at the highest two light levels was extremely low (0.10%–0.14% of dry weight). P stress has been reported to cause acidification. Because plants in the two lowest light treatments had adequate P, it was not possible to determine if the drop in substrate pH was a direct light effect or a combination of light and P. The second experiment used a factorial combination of the three highest light levels from Expt. 1 and five preplant P rates (0, 0.065, 0.13, 0.26, or 0.52 g·L−1 substrate) to assess this question. When tissue P concentrations were deficient, pH decreased by 0.6 to 1.0 pH units within 2 weeks and deficiency occurred more often with high light intensity. These data indicated that P deficiency caused substrate acidification and indicated the possibility that P uptake was suppressed by high light intensity. The third experiment was conducted in hydroponics to determine the direct effect of high light intensity on P uptake. In this experiment, cumulative P uptake per gram root and the rate of P uptake per gram root per day both decreased 20% when light intensity increased from 500 to 1100 μmol·m−2·s−1. It is clear from this study that P deficiency causes geraniums to acidify the substrate and that high light suppresses P uptake.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3