Outcrossing in Florida Avocados as Measured Using Microsatellite Markers

Author:

Borrone James W.,Olano Cecile T.,Kuhn David N.,Brown J. Steven,Schnell Raymond J.,Violi Helen A.

Abstract

Avocado (Persea americana Mill.) possesses a unique flowering mechanism, thought to promote out-crossing, in which the male and female parts of the perfect flower function at different time periods. Cultivars are classified as Flowering Type A, where flowers are functionally female the morning of one day and functionally male the afternoon of the next day, or Flowering Type B, where flowers are functionally female in the afternoon and functionally male the next morning. Avocado growers typically interplant cultivars of opposite flowering types to maximize yield. Recently, it has been hypothesized that 90% to 95% of avocado flowers are self-pollinated in southern Florida. However, this hypothesis does not address whether mature, marketable avocado fruit in Florida are the result of outcrossing. To determine whether avocado fruit in southern Florida result from self-pollination or outcrossing, fruit were harvested from a commercial orchard in Miami-Dade County, Florida, from a block consisting of two cultivars, Simmonds (Flowering Type A) and Tonnage (Flowering Type B), interplanted in approximately equal numbers. Seeds were germinated and the resulting progeny were genotyped using eight fully informative, microsatellite markers. Seventy-four percent of the ‘Simmonds’ progeny and 96% of the ‘Tonnage’ progeny were judged to be the result of cross-pollination, with an estimated overall outcrossing rate of 63% to 85% within this particular block of the orchard. Seedlings judged to be the result of cross-pollinations between ‘Simmonds’ and ‘Tonnage’ are being maintained at the U.S. Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station and are being evaluated for segregation of important agronomic and horticultural traits.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3