Author:
van Iersel Marc W.,Bugbee Bruce
Abstract
Benzimidazoles are effective and widely used fungicides, but they may be phytotoxic. We studied the effects of a single drench application of six benzimidazoles and one acetanilide fungicide on photosynthetic gas exchange, growth, development, and nutrient levels of four species of bedding plants in twenty growth-chamber and four greenhouse studies. Daily carbon gain and carbon-use efficiency were calculated from continuous crop gas-exchange measurements in the growth chambers. The maximum labeled rate of Benlate DF caused a 7- to 10-day decrease in net photosynthesis and daily carbon gain in transplants of all species. It also caused pronounced interveinal chlorosis and a 2- to 3-day delay in flowering. Growth of Benlate DF-treated plants was reduced more at high (90%) than at low (60% to 80%) relative humidity. Benlate DF had severe effects on 2-week-old petunia (Petunia ×hybrida) seedlings in plug flats, reducing photosynthesis 25% to 57%. Cleary's 3336 WP decreased photosynthesis in some trials. Benlate DF reduced photosynthesis within 24 hours, but 3336 WP effects did not become apparent until 1 week after the treatment. This suggests different modes of inhibition. 3336 WP also caused leaf-tip and marginal chlorosis in impatiens (Impatiens wallerana). Mertect 340-F was extremely phytotoxic but is not labeled for drench applications (it was included because of its chemical similarity to other benzimidazoles). The only benzimidazole fungicide that did not reduce photosynthesis was Derosal, but it caused slight interveinal chlorosis in some studies with petunia. Benlate DF and Derosal decreased leaf Ca levels. Subdue (or metalaxyl), an acetanilide fungicide, did not affect photosynthesis or cause any visual symptoms. Our results indicate that some benzimidazole fungicides can cause growth reductions and visual damage in bedding plants.
Publisher
American Society for Horticultural Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献