Groundcover Management Systems Influence Fungicide and Nitrate-N Concentrations in Leachate and Runoff from a New York Apple Orchard

Author:

Merwin Ian A.,Ray John A.,Steenhuis Tammo S.,Boll Jan

Abstract

Commercial apple (Malus domestica Borkh.) orchards in the northeastern United States receive heavy pesticide inputs and are often located on well-drained soils near surface and groundwater resources. Nonpoint-source water pollution by agrichemicals has been monitored in agronomic crop systems and simulated using computer models and laboratory soil columns, but inadequately studied at field scale in orchards. We monitored the concentrations of agrichemical tracers, nitrate-N, and benomyl fungicide in water samples from two apple orchards under mowed sodgrass (Mowed-Sod), shredded bark mulch (Bark-Mulch), preemergence residual herbicides (Resid-Herb), and postemergence herbicide (Post-Herb) groundcover management systems (GMSs). In one orchard, we evaluated subsurface spatial patterns and flow rates of a weakly adsorbed blue dye (pesticide analog) and potassium bromide (nitrate analog) under trees after six years of Post-Herb and Mowed-Sod treatments. Nitrate and pesticide tracers leached more rapidly and in higher concentrations under Post-Herb treatments, apparently via preferential macropore flowpaths such as root channels, soil cracks, and macrofauna burrows. At another orchard, we monitored subsurface leaching and surface runoff of benomyl and nitrate-N on a whole-field scale. Peak concentrations of benomyl (up to 29 mg·liter-1) and nitrates (up to 20 mg·liter-1) were observed in subsoil leachate under Resid-Herb plots during 1993. In 1994, nitrate concentrations were greater in leachate from all GMSs, with upper ranges from 48 to 66 mg·liter-1, while benomyl concentrations were lower in all GMSs compared with the previous summer. In surface water runoff during 1993, the highest benomyl concentrations (387 mg·liter-1) and most frequent outflows occurred in Resid-Herb plots. During 1994, benomyl runoff was more frequent in both herbicide GMSs, with concentrations up to 61 mg·liter-1 observed in the Post-Herb plots. Weather patterns, irrigation intensity, differing soil conditions under each GMS, and the turfgrass/clover drive lanes affected the relative frequency and concentrations of benomyl and nitrate leaching and runoff. Preferential bypass flow appeared to be a major subsurface leaching pathway, and erosion sediment an important factor in surface movement of these agrichemicals. Our studies suggest that nitrate-N and benomyl fungicide may be more prone to leaching or runoff from orchard soils under some herbicide GMSs in comparison with mowed sodgrass or biomass mulch systems.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3