Author:
Merwin Ian A.,Ray John A.,Steenhuis Tammo S.,Boll Jan
Abstract
Commercial apple (Malus domestica Borkh.) orchards in the northeastern United States receive heavy pesticide inputs and are often located on well-drained soils near surface and groundwater resources. Nonpoint-source water pollution by agrichemicals has been monitored in agronomic crop systems and simulated using computer models and laboratory soil columns, but inadequately studied at field scale in orchards. We monitored the concentrations of agrichemical tracers, nitrate-N, and benomyl fungicide in water samples from two apple orchards under mowed sodgrass (Mowed-Sod), shredded bark mulch (Bark-Mulch), preemergence residual herbicides (Resid-Herb), and postemergence herbicide (Post-Herb) groundcover management systems (GMSs). In one orchard, we evaluated subsurface spatial patterns and flow rates of a weakly adsorbed blue dye (pesticide analog) and potassium bromide (nitrate analog) under trees after six years of Post-Herb and Mowed-Sod treatments. Nitrate and pesticide tracers leached more rapidly and in higher concentrations under Post-Herb treatments, apparently via preferential macropore flowpaths such as root channels, soil cracks, and macrofauna burrows. At another orchard, we monitored subsurface leaching and surface runoff of benomyl and nitrate-N on a whole-field scale. Peak concentrations of benomyl (up to 29 mg·liter-1) and nitrates (up to 20 mg·liter-1) were observed in subsoil leachate under Resid-Herb plots during 1993. In 1994, nitrate concentrations were greater in leachate from all GMSs, with upper ranges from 48 to 66 mg·liter-1, while benomyl concentrations were lower in all GMSs compared with the previous summer. In surface water runoff during 1993, the highest benomyl concentrations (387 mg·liter-1) and most frequent outflows occurred in Resid-Herb plots. During 1994, benomyl runoff was more frequent in both herbicide GMSs, with concentrations up to 61 mg·liter-1 observed in the Post-Herb plots. Weather patterns, irrigation intensity, differing soil conditions under each GMS, and the turfgrass/clover drive lanes affected the relative frequency and concentrations of benomyl and nitrate leaching and runoff. Preferential bypass flow appeared to be a major subsurface leaching pathway, and erosion sediment an important factor in surface movement of these agrichemicals. Our studies suggest that nitrate-N and benomyl fungicide may be more prone to leaching or runoff from orchard soils under some herbicide GMSs in comparison with mowed sodgrass or biomass mulch systems.
Publisher
American Society for Horticultural Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献