Metabolic Responses of Hybrid Bermudagrass to Short-term and Long-term Drought Stress

Author:

Du Hongmei,Wang Zhaolong,Yu Wenjuan,Huang Bingru

Abstract

The accumulation of different types of metabolites may reflect variations in plant adaptation to different severities or durations of drought stress. The objectives of this project are to examine changes in metabolomic profiles and determine predominant metabolites in response to short-term (6 days) and long-term (18 days) drought stress with gas chromatography–mass spectrometry analysis in a C4 perennial grass species. Plants of hybrid bermudagrass (Cynodon dactylon × C. transvaalensis cv. Tifdwarf) were unirrigated for 18 days to induce drought stress in growth chambers. Physiological responses to drought stress were evaluated by visual rating of grass quality, relative water content, photochemical efficiency, and electrolyte leakage (EL). All parameters decreased significantly at 6 and 18 days of drought stress, except EL, which increased with the duration of drought stress. Under short-term drought stress (6 days), the content did not change significantly for most metabolites, except methionine, serine, γ-aminobutyric acid (GABA), isoleucine, and mannose. Most metabolites showed higher accumulation under long-term drought stress compared with that under the well-watered conditions, including three organic acids (malic acid, galacturonic acid, and succinic acid), 10 amino acids (proline, asparagine, phenylalanine, methionine, serine, 5-hydroxynorvaline, GABA, glycine, theorine, valine), seven sugars (sucrose, glucose, galactose, fructose, mannose, maltose, xylose), one nitrogen compound (ethanolamine), and two-sugar alcohol (myo-inositol). The accumulation of those metabolites, especially malic acid, proline, and sucrose, could be associated with drought adaptation of C4 hybrid bermudagrass to long-term or severe drought stress.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3