Author:
Du Hongmei,Wang Zhaolong,Yu Wenjuan,Huang Bingru
Abstract
The accumulation of different types of metabolites may reflect variations in plant adaptation to different severities or durations of drought stress. The objectives of this project are to examine changes in metabolomic profiles and determine predominant metabolites in response to short-term (6 days) and long-term (18 days) drought stress with gas chromatography–mass spectrometry analysis in a C4 perennial grass species. Plants of hybrid bermudagrass (Cynodon dactylon × C. transvaalensis cv. Tifdwarf) were unirrigated for 18 days to induce drought stress in growth chambers. Physiological responses to drought stress were evaluated by visual rating of grass quality, relative water content, photochemical efficiency, and electrolyte leakage (EL). All parameters decreased significantly at 6 and 18 days of drought stress, except EL, which increased with the duration of drought stress. Under short-term drought stress (6 days), the content did not change significantly for most metabolites, except methionine, serine, γ-aminobutyric acid (GABA), isoleucine, and mannose. Most metabolites showed higher accumulation under long-term drought stress compared with that under the well-watered conditions, including three organic acids (malic acid, galacturonic acid, and succinic acid), 10 amino acids (proline, asparagine, phenylalanine, methionine, serine, 5-hydroxynorvaline, GABA, glycine, theorine, valine), seven sugars (sucrose, glucose, galactose, fructose, mannose, maltose, xylose), one nitrogen compound (ethanolamine), and two-sugar alcohol (myo-inositol). The accumulation of those metabolites, especially malic acid, proline, and sucrose, could be associated with drought adaptation of C4 hybrid bermudagrass to long-term or severe drought stress.
Publisher
American Society for Horticultural Science