Characterization of Topiary (top) an Architectural Mutant of Common Bean

Author:

Guner N.,Myers J.R.

Abstract

Plant breeders are interested in developing upright common beans (Phaseolus vulgaris L.) to reduce diseases and permit mechanical harvest, and improve seed quality. Morphological and genetic characteristics of an architectural mutant in common beans were studied. The mutant had shiny, dark green leaves, overlapping leaflets, and short petioles. Branching was nearly absent, resulting in single stemmed plants. Although mutant plants carried Fin for indeterminacy, and plants progressed in flowering from lower to higher nodes, the terminal node was reproductive. This represents a new form of determinacy in common bean. Inheritance studies demonstrated that the mutant syndrome was controlled by a single recessive gene. Allelism tests between the mutant and overlapping leaflets (ol), and dark green savoy leaf (dgs) showed that the mutant was not allelic to either locus. The trait was designated as Topiary with the gene symbol top, describing its compact and neat appearance. Linkage was tested between top and growth habit (fin), shiny leaves, cross-sectional shape of pods, striped pod (C prpst), and pod suture strings. All genes segregated independently. The genetic merit of the Topiary mutant for improving common beans needs to be investigated, especially the value of single stem growth habit combined with an upright plant habit.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development and Phenotypic Screening of an Ethyl Methane Sulfonate Mutant Population in Soybean;Frontiers in Plant Science;2018-03-29

2. Inheritance of Leaf Spots and Their Genetic Relationships with Leaf Shape and Vein Color in Caladium;Journal of the American Society for Horticultural Science;2008-01

3. Independent Inheritance of Leaf Shape and Main Vein Color in Caladium;Journal of the American Society for Horticultural Science;2006-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3