Transcription Factor Families Regulate the Anthocyanin Biosynthetic Pathway in Capsicum annuum

Author:

Stommel John R.,Lightbourn Gordon J.,Winkel Brenda S.,Griesbach Robert J.

Abstract

Anthocyanin structural gene transcription requires the expression of at least one member of each of three transcription factor families: MYC, MYB, and WD40. These transcription factors form a complex that binds to structural gene promoters, thereby modulating gene expression. Capsicum annuum L. (pepper) displays a wide spectrum of tissue-specific anthocyanin pigmentation, making it a useful model for the study of anthocyanin accumulation. To determine the genetic basis for tissue-specific pigmentation, we used real-time polymerase chain reaction to evaluate the expression of anthocyanin biosynthetic (Chs, Dfr, and Ans) and regulatory (Myc, MybA , and Wd) genes in flower, fruit, and foliar tissue from pigmented and nonpigmented C. annuum genotypes. No differences were observed in expression of the Wd gene among these tissues. However, in all cases, biosynthetic gene transcript levels were significantly higher in anthocyanin-pigmented tissue than in nonpigmented tissues. MybA and Myc transcript levels were also substantially higher in anthocyanin-pigmented floral and fruit tissues. Our results demonstrate that differential expression of C. annuum MybA as well as Myc occurs coincident with anthocyanin accumulation in C. annuum flower and fruit tissues. In contrast to the situation in flowers and fruit, differential expression of MybA and Myc was not observed in foliar tissue, suggesting that different mechanisms contribute to the regulation of anthocyanin biosynthesis in different parts of the C. annuum plant. Cloning and sequencing of MybA genomic and cDNA clones revealed two introns of 249 and 441 bp between the R2R3 domains. Whereas the Myb R2R3 domains were conserved between C. annuum and Petunia ×hybrida Vilm., the sequence of the non-R2R3 domains was not conserved, with very little homology in these related Solanaceous species.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3