Author:
Ervin E.H.,Ok C.H.,Fresenburg B.S.,Dunn J.H.
Abstract
'Meyer' zoysiagrass (Zoysia japonica Steud.) is a popular turfgrass species for transition zone golf course fairways and tees because it is generally winter hardy while providing an excellent playing surface with minimal chemical and irrigation inputs. However, its functionality declines readily on many of the shaded areas on these courses. Reduced irradiance causes excessive shoot elongation, reduced tillering, and weak plants that are poorly suited to tolerate or recover from traffic and divoting. Trinexapac-ethyl (TE) effectively reduces gibberellic acid (GA) biosynthesis and subsequent shoot cell elongation. The objective of this study was to determine if monthly applications of TE would reduce shoot elongation of 'Meyer' zoysiagrass and improve stand persistence under two levels of shade. Shade structures were constructed in the field that continuously restricted 77% and 89% irradiance. A mature stand of 'Meyer' was treated with all combinations of three levels of shade (0%, 77%, and 89%) and three levels of monthly TE application [0, 48 g·ha-1 a.i. (0.5×), and 96 g·ha-1 a.i. (1×)] in 1998 and 1999. In full sun, the 0.5×-rate reduced clipping production by 17% to 20% over a four-week period and the 1×-rate by 30% to 37%. Monthly application of TE at the 1×-rate increased 'Meyer' tiller density in full sun and under 77% shade. Both rates of TE consistently reduced shoot growth under shade relative to the shaded control. Only the monthly applications at the 1×-rate consistently delayed loss of quality under 77% shade. The zoysiagrass persisted very poorly under 89% shade whether treated or not with TE and plots were mostly dead at the end of the experiment. Our results indicate TE can be an effective management practice to increase 'Meyer' zoysiagrass persistence in shaded environments. Chemical name used: 4-cyclopropyl-α-hydroxy-methylene-3,5-dioxocyclohexanecarboxylic acid ethyl ester (trinexapac-ethyl)
Publisher
American Society for Horticultural Science
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献