Trinexapac-ethyl Restricts Shoot Growth and Prolongs Stand Density of 'Meyer' Zoysiagrass Fairway Under Shade

Author:

Ervin E.H.,Ok C.H.,Fresenburg B.S.,Dunn J.H.

Abstract

'Meyer' zoysiagrass (Zoysia japonica Steud.) is a popular turfgrass species for transition zone golf course fairways and tees because it is generally winter hardy while providing an excellent playing surface with minimal chemical and irrigation inputs. However, its functionality declines readily on many of the shaded areas on these courses. Reduced irradiance causes excessive shoot elongation, reduced tillering, and weak plants that are poorly suited to tolerate or recover from traffic and divoting. Trinexapac-ethyl (TE) effectively reduces gibberellic acid (GA) biosynthesis and subsequent shoot cell elongation. The objective of this study was to determine if monthly applications of TE would reduce shoot elongation of 'Meyer' zoysiagrass and improve stand persistence under two levels of shade. Shade structures were constructed in the field that continuously restricted 77% and 89% irradiance. A mature stand of 'Meyer' was treated with all combinations of three levels of shade (0%, 77%, and 89%) and three levels of monthly TE application [0, 48 g·ha-1 a.i. (0.5×), and 96 g·ha-1 a.i. (1×)] in 1998 and 1999. In full sun, the 0.5×-rate reduced clipping production by 17% to 20% over a four-week period and the 1×-rate by 30% to 37%. Monthly application of TE at the 1×-rate increased 'Meyer' tiller density in full sun and under 77% shade. Both rates of TE consistently reduced shoot growth under shade relative to the shaded control. Only the monthly applications at the 1×-rate consistently delayed loss of quality under 77% shade. The zoysiagrass persisted very poorly under 89% shade whether treated or not with TE and plots were mostly dead at the end of the experiment. Our results indicate TE can be an effective management practice to increase 'Meyer' zoysiagrass persistence in shaded environments. Chemical name used: 4-cyclopropyl-α-hydroxy-methylene-3,5-dioxocyclohexanecarboxylic acid ethyl ester (trinexapac-ethyl)

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3