Nitrogen and Phosphorous Removal by Ornamental and Wetland Plants in a Greenhouse Recirculation Research System

Author:

Chen Yan,Bracy Regina P.,Owings Allen D.,Merhaut Donald J.

Abstract

A nutrient recirculation system (NRS) was used to assess the ability of four ornamental and three wetland plant species to remove nitrogen (N) and phosphorous (P) from stormwater runoff. The NRS was filled with a nutrient solution with total N and P concentrations of 11.3 and 3.1 mg·L−1, respectively, to simulate high levels of nutrient contaminations in stormwater. Nutrient removal abilities of herbaceous perennial ornamental plants, canna (Canna ×generalis Bailey) ‘Australia’, iris (Iris pseudacorus L.) ‘Golden Fleece’, calla lily [Zantedeschia aethiopica (L.) Spreng], and dwarf papyrus (Cyperus haspan L.) were compared with those of wetland plants arrow arum [Peltandra virginica (L.) Schott], pickerelweed (Pontederia cordata L.), and bulltongue arrowhead (Sagittaria lancifolia L.) in three experiments. ‘Australia’ canna had the greatest water consumption, total biomass production, and aboveground N and P content followed by pickerelweed. ‘Golden Fleece’ iris had higher tissue N concentrations than canna but much lower biomass production. Dwarf papyrus had similar total biomass as pickerelweed but less shoot biomass. N and P removed from the NRS units planted with canna (98.7% N and 91.8% P) were higher than those planted with iris and arrow arum (31.6% and 31.5% N, and 38.5% and 26.3% P, respectively). NRS units planted with dwarf papyrus had similar nutrient recovery rate as pickerelweed, but much less total N and P were removed as a result of less water consumption. The NRS units planted with calla lily had lower nutrient removal than canna and pickerelweed. Our results suggest that canna is a promising ornamental species for stormwater mitigation, and harvesting the aboveground biomass of canna can effectively remove N and P from the treatment system. However, more research needs to be done to evaluate factors that might affect plant performance in a floating biofiltration system.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3