Physical and Hydraulic Properties of Commercial Pine-bark Substrate Products Used in Production of Containerized Crops

Author:

Altland James E.,Owen James S.,Jackson Brian E.,Fields Jeb S.

Abstract

Pine bark is the primary constituent of nursery container media (i.e., soilless substrate) in the eastern United States. Pine bark physical and hydraulic properties vary depending on the supplier due to source (e.g., lumber mill type) or methods of additional processing or aging. Pine bark can be processed via hammer milling or grinding before or after being aged from ≤1 month (fresh) to ≥6 month (aged). Additionally, bark is commonly amended with sand to alter physical properties and increase bulk density (Db). Information is limited on physical or hydraulic differences of bark between varying sources or the effect of sand amendments. Pine bark physical and hydraulic properties from six commercial sources were compared as a function of age and amendment with sand. Aging bark, alone, had little effect on total porosity (TP), which remained at ≈80.5% (by volume). However, aging pine bark from ≤1 to ≥6 months shifted particle size from the coarse (>2 mm) to fine fraction (<0.5 mm), which increased container capacity (CC) 21.4% and decreased air space (AS) by 17.2% (by volume) regardless of source. The addition of sand to the substrate had a similar effect on particle size distribution to that of aging, increasing CC and Db while decreasing AS. Total porosity decreased with the addition of sand. The magnitude of change in TP, AS, CC, and Db from a nonamended pine bark substrate was greater with fine vs. coarse sand and varied by bark source. When comparing hydrological properties across three pine bark sources, readily available water content was unaffected; however, moisture characteristic curves (MCC) differed due to particle size distribution affecting the residual water content and subsequent shift from gravitational to either capillary or hygroscopic water. Similarly, hydraulic conductivity (i.e., ability to transfer water within the container) decreased with increasing particle size.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3