Grafting Improves Tomato Salinity Tolerance through Sodium Partitioning within the Shoot

Author:

Di Gioia Francesco,Signore Angelo,Serio Francesco,Santamaria Pietro

Abstract

Two greenhouse experiments were carried out to analyze the shoot sodium (Na+) partitioning, yield, and fruit quality of ‘Cuore di Bue’, a salt-sensitive heirloom tomato (Solanum lycopersicum L.), ungrafted or grafted onto interspecific tomato hybrid rootstocks (S. lycopersicum × S. habrochaites) ‘Maxifort’ and ‘Arnold’ in 2009, ‘Arnold’ and ‘Armstrong’ in 2010, grown at different salinity stress (SS) levels (0, 20, and 40 mm of NaCl in 2009; 0 and 20 mm of NaCl in 2010). In both experiments, an interaction was observed between grafting combinations and SS levels in terms of fruit yield, and fruit juice Na+ content. Under no SS conditions, plant grafted onto ‘Maxifort’ and ‘Armstrong’ provided the highest yield in 2009 and 2010 experiments, respectively. In the presence of 20 mm of NaCl, plants grafted onto ‘Arnold’ provided a marketable yield 23.5% (on average) higher than plants grafted onto ‘Maxifort’ or ungrafted in 2009 and 33% (on average) higher than plants grafted onto ‘Armstrong’ or ungrafted in 2010. The further increase of SS to 40 mm of NaCl considerably reduced the productivity of all grafting combinations. At 20 mm of NaCl, plants grafted onto ‘Arnold’ showed also a higher capacity to modulate shoot Na+ partitioning with respect to ungrafted plants by increasing Na+ accumulation in older leaves (52%) and reducing Na+ content in younger and most active leaves (24%), thus enabling the maintenance of higher K+/Na+, Ca2+/Na+, and Mg2+/Na+ ratios compared with ungrafted plants. Fruit total soluble solids content, titratable acidity, and dry matter were unaffected by grafting at any SS level, whereas under SS, the fruit juice Na+ content of grafted plants was consistently lower (from 19% up to 68%) than that of ungrafted plants. Under moderate SS conditions (20 mm of NaCl), the use of rootstock genotypes such as ‘Arnold’ having a particular ability to reduce Na+ accumulation in younger and most active leaves may increase tomato yield and enhance tomato nutritional value by reducing the fruit juice Na+ content.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3