Controlled Water Deficit as an Alternative to Plant Growth Retardants for Regulation of Poinsettia Stem Elongation

Author:

Alem Peter,Thomas Paul A.,van Iersel Marc W.

Abstract

Production of poinsettias (Euphorbia pulcherrima) often involves intensive use of plant growth retardants (PGRs) to regulate height. Height control is necessary for visual appeal and postharvest handling. Since PGRs do not always provide consistent height control and can have unwanted side effects, there is interest in alternative methods of height control. Since turgor potential drives cell expansion, and thus stem elongation, drought stress has potential for regulating plant height. Through soil moisture sensor-controlled irrigation, the severity of drought stress can be both monitored and controlled. The objective of our study was to compare poinsettia ‘Classic Red’ height control using PGRs (spray, mixture of daminozide and chlormequat at 1000 mg·L−1 each and drench, 0.25 mg·L−1 paclobutrazol) with the use of controlled water deficit (WD). Graphical tracking of plant height, using a final target height of 43.5 cm, was used to determine when to apply PGR or controlled WD. In the WD treatment, substrate volumetric water content (θ) was reduced from 0.40 to 0.20 m3·m−3 when actual height exceeded the expected height. PGR applications (spray or drench) reduced poinsettia height to 39 cm, below the final target level of 43.5 cm. WD resulted in a height of 44.5 cm, closest to the target height, while control plants were taller (49.4 cm). There was no effect of PGR drenches or WD on bract size, while spraying PGR reduced bract size by ≈ 40%. Bract chroma was unaffected by WD or PGR treatments. There was no difference in shoot dry weight between PGR- and WD-treated plants. Lateral growth was reduced by the PGR treatments, but not by WD. These results indicate that controlled WD can be used to regulate poinsettia height.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3