Author:
Bottoms Thomas G.,Smith Richard F.,Cahn Michael D.,Hartz Timothy K.
Abstract
As concern over NO3-N pollution of groundwater increases, California lettuce growers are under pressure to improve nitrogen (N) fertilizer efficiency. Crop growth, N uptake, and the value of soil and plant N diagnostic measures were evaluated in 24 iceberg and romaine lettuce (Lactuca sativa L. var. capitata L., and longifolia Lam., respectively) field trials from 2007 to 2010. The reliability of presidedressing soil nitrate testing (PSNT) to identify fields in which N application could be reduced or eliminated was evaluated in 16 non-replicated strip trials and five replicated trials on commercial farms. All commercial field sites had greater than 20 mg·kg−1 residual soil NO3-N at the time of the first in-season N application. In the strip trials, plots in which the cooperating growers’ initial sidedress N application was eliminated or reduced were compared with the growers’ standard N fertilization program. In the replicated trials, the growers’ N regime was compared with treatments in which one or more N fertigation through drip irrigation was eliminated. Additionally, seasonal N rates from 11 to 336 kg·ha−1 were compared in three replicated drip-irrigated research farm trials. Seasonal N application in the strip trials was reduced by an average of 77 kg·ha−1 (73 kg·ha−1 vs. 150 kg·ha−1 for the grower N regime) with no reduction in fresh biomass produced and only a slight reduction in crop N uptake (151 kg·ha−1 vs. 156 kg·ha−1 for the grower N regime). Similarly, an average seasonal N rate reduction of 88 kg·ha−1 (96 kg·ha−1 vs. 184 kg·ha−1) was achieved in the replicated commercial trials with no biomass reduction. Seasonal N rates between 111 and 192 kg·ha−1 maximized fresh biomass in the research farm trials, which were conducted in fields with lower residual soil NO3-N than the commercial trials. Across fields, lettuce N uptake was slow in the first 4 weeks after planting, averaging less than 0.5 kg·ha−1·d−1. N uptake then increased linearly until harvest (≈9 weeks after planting), averaging ≈4 kg·ha−1·d−1 over that period. Whole plant critical N concentration (Nc, the minimum whole plant N concentration required to maximize growth) was estimated by the equation Nc (g·kg−1) = 42 − 2.8 dry mass (DM, Mg·ha−1); on that basis, critical N uptake (crop N uptake required to maintain whole plant N above Nc) in the commercial fields averaged 116 kg·ha−1 compared with the mean uptake of 145 kg·ha−1 with the grower N regime. Soil NO3-N greater than 20 mg·kg−1 was a reliable indicator that N application could be reduced or delayed. Neither leaf N nor midrib NO3-N was correlated with concurrently measured soil NO3-N and therefore of limited value in directing in-season N fertilization.
Publisher
American Society for Horticultural Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献