Characterization of Lateral Root Development at the Onset of Storage Root Initiation in ‘Beauregard’ Sweetpotato Adventitious Roots

Author:

Villordon Arthur,LaBonte Don,Solis Julio,Firon Nurit

Abstract

This study characterized lateral root (LR) development attributes during the onset of storage root (SR) initiation stage in ‘Beauregard’ sweetpotato. SR initiation has been defined as the appearance of cambia around the protoxylem and secondary xylem elements. Our results showed that 20-day-old adventitious roots (ARs) classified as SRs had 53% and 85% greater mean LR count than pencil roots (PRs) and lignified roots (LGs), respectively. SRs had 53% and 78% greater mean LR density relative to PRs and LGs, respectively. SRs had 66% and 130% greater mean total LR length than PRs and LGs, respectively. SRs had lower mean main root (MR)/LR length ratio compared with PRs (–38%) and LGs (–60%). SRs had 70% and 134% greater mean surface area than PRs and LGs, respectively. SRs had lower mean MR/LR surface area ratio compared with PRs (–42%) and LGs (–62%). The plot of the first and second principal components revealed the presence of a gradient between extreme LG and SR clusters, suggesting a developmental transition between LGs and SRs with PRs representing an intermediate developmental stage. Although AR architecture is not the sole determinant of SR formation, our data help provide a basis for integrating AR architecture attributes with other factors that are known to influence SR initiation. Growth substrate moisture variability influenced LR development during the critical SR initiation period. Relative to the control treatments, water deprivation 10 to 20 days after transplanting (DAT) reduced mean LR count, length, and surface area by 49%, 103%, and 94%, respectively. Saturated conditions 10 to 20 DAT reduced mean LR count, length, and surface area by 75%, 81%, and 77%, respectively. These results represent the first evidence for the association between anatomical cues of SR initiation and root architecture and provide corroborating data that soil moisture variability 10 to 20 DAT directly influences SR yield potential through AR architecture modifications that are associated with diminished SR formation. This information can be used to further optimize SR yield by identifying agroclimatic and management variables that are associated with desirable LR development during the critical SR initiation stage.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3