An Artificial Inoculation Method to Select Mature Onion Bulbs Resistant to Fusarium Basal Rot

Author:

Mandal Subhankar,Cramer Christopher S.

Abstract

Fusarium basal rot (FBR) of onion, which is caused by Fusarium oxysporum f.sp. cepae (Hanzawa) Snyder & Hansen (FOC) results in a substantial loss of marketable bulbs worldwide. One of the main reasons for the lack of FBR-resistant short-day cultivars is the unreliable screening methods available for the mature bulb stage when significant economic damage occurs. The objective of this study was to develop an artificial inoculation method with better quantification of inoculum for an effective selection of FBR-resistant mature onion bulbs. Mature bulbs of seven New Mexican short-day onion cultivars, along with susceptible and tolerant controls, were selected and evaluated for FBR resistance using mycelial and conidial inoculation methods, respectively. Transversely cut basal plates of mature bulbs were inoculated artificially with mycelia or conidia (12 × 105 spores/mL in 2014 and 3 × 105 spores/mL in 2015 embedded in potato dextrose agar plug) of a virulent FOC isolate ‘CSC-515’. Mature bulb evaluation using a visual rating scale (1 = no disease; 9 = >70% basal plate infected) revealed a high degree of FBR severity and incidence irrespective of the genetic background of the cultivars, minimizing the chance of disease escape, which is a significant problem in field inoculation. An attempt to inoculate intact basal plates postharvest resulted in minimal disease development, suggesting that mechanical resistance was conferred by the dry outer layer of the basal plate. The high selection pressure conferred by the conidial inoculation method developed in this study can effectively screen FBR-resistant onion bulbs to replace an unreliable field screening. Concentrations of the conidia lower than 3 × 105 spores/mL are recommended to detect subtle genetic differences in FBR resistance among the onion cultivars and their selected population.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3