Renewable Biomethane From Land and Ocean Energy Crops and Organic Wastes

Author:

Chynoweth David P.

Abstract

Production of methane via anaerobic digestion of energy crops and organic wastes would benefit society by providing a clean fuel from renewable feedstocks. This could replace fossil fuel-derived energy and reduce its environmental impacts, including global warming and acid rain. Although biomass energy is more costly than fossil fuel-derived energy, trends to limit carbon dioxide and other emissions through regulations, carbon taxes, and subsidies of biomass energy would make it cost competitive. Methane derived from anaerobic digestion is competitive in efficiencies and costs with other biomass energy forms including heat, synthesis gases, and ethanol. The objective of this paper is to review the results and conclusions of research on biomass energy conducted under the sponsorship of the gas industry with periodic co-funding from other agencies. The scope of this program was to determine the technical and economic feasibility of production of substitute natural gas (SNG) from marine and terrestrial biomass and organic wastes using anaerobic digestion as a conversion process. This work began in 1968 and continued until about 1990, ending as a result of low energy prices in the U.S. and reduced emphasis on renewable energy. For each of these feedstock categories, growth or collection (in the case of wastes), harvesting, conversion by anaerobic digestion, and systems and economic analysis were addressed. More recently the potential use of anaerobic digestion for stabilization and recovery of nutrients from solid wastes during space missions was studied with funding from NASA. The application of this process for that function as well as treatment of wastewater and waste gases generated during space missions is addressed.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3