Deterioration of Potentially Biodegradable Alternatives to Black Plastic Mulch in Three Tomato Production Regions

Author:

Miles Carol,Wallace Russ,Wszelaki Annette,Martin Jeffrey,Cowan Jeremy,Walters Tom,Inglis Debra

Abstract

Four potentially biodegradable mulch products (BioAgri, BioTelo, WeedGuardPlus, and SB-PLA-10) were evaluated during 2010 in three contrasting regions of the United States (Knoxville, TN; Lubbock, TX; and Mount Vernon, WA) and compared with black plastic mulch and a no-mulch control for durability, weed control, and impact on tomato yield in high tunnel and open field production systems. WeedGuardPlus, BioTelo, and BioAgri had the greatest number of rips, tears, and holes (RTH) and percent visually observed deterioration (PVD) at all three sites (P ≤ 0.05), and values were greater in the open field than high tunnels, likely as a result of high winds and greater solar radiation and rainfall. SB-PLA-10 showed essentially no deterioration at all three sites and was equivalent to black plastic in both high tunnels and the open field. Weed growth at the sites did not differ in high tunnels as compared with the open field (P > 0.05). Weed growth at Knoxville and Mount Vernon was greatest under SB-PLA-10 (P ≤ 0.02), likely as a result of the white, translucent nature of this test product. Tomato yield was greater in the high tunnels than open field at all three sites (P ≤ 0.03), except for total fruit weight at Knoxville (P ≤ 0.53). Total number of tomato fruit and total fruit weight were lowest for bare ground at both Knoxville (150 × 104 fruit/ha and 29 t·ha−1; P ≤ 0.04) and Mount Vernon (44 × 104 fruit/ha and 11 t·ha−1; P ≤ 0.008). At Knoxville, the other mulch treatments were statistically equivalent, whereas at Mount Vernon, BioAgri had among the highest yields (66 × 104 fruit/ha and 16 t·ha−1). There were no differences in tomato yield resulting from mulch type at Lubbock.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3