Solanum habrochaites Accession LA1777 Recombinant Inbred Lines Are Not Resistant to Tomato Yellow Leaf Curl Virus or Tomato Mottle Virus

Author:

Momotaz Aliya,Scott John W.,Schuster David J.

Abstract

Cultivated tomato (Solanum lycopersicum L.) accessions have been susceptible to the whitefly-transmitted begomoviruses Tomato yellow leaf curl virus (TYLCV) and Tomato mottle virus (ToMoV) that can cause serious crop damage. S. habrochaites accession LA1777 has been reported to be resistant to TYLCV. To locate putative virus resistance genes, 89 recombinant inbred lines (RILs) previously developed from LA1777 in a tomato background, LA1777 and the susceptible RIL parent E6203, were screened against the begomoviruses TYLCV and ToMoV. An initial study showed 18 RILs had less disease severity to TYLCV or ToMoV. Eight RILs had S. habrochaites alleles at TG27 (restriction fragment length polymorphism marker) on chromosome 1, three RILs had S. habrochaites alleles at TG202 on chromosome 7, and one RIL had S. habrochaites alleles at both marker loci. The RILs with these regions were intercrossed in 10 different cross combinations and F2 seeds were then obtained. The F2 progenies were inoculated separately with both viruses and then evaluated in the field. The F2 plants with less disease severity were selected, but most did not have the markers from the hypothetical resistance regions. The F3 progenies were then inoculated and rated for disease severity to both viruses. None of the F3s demonstrated any increased level of resistance, even if derived from F2s homozygous for the target regions from both chromosomes. All plants from every cross combination were susceptible for both TYLCV and ToMoV, suggesting that there is no begomovirus resistance in the LA1777 RIL population. Some limitations of capturing all genes in an RIL population derived from an outcrossing accession are discussed.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3