Author:
Birrenkott Brian A.,Craig Joseph L.,McVey George R.
Abstract
A leach collection unit (LCU) was assembled to capture all leachate draining from a nursery container. An injection molded 2.8-L nursery container was plastic welded into the lid of a 7.6-L black plastic collection bucket so that the bottom 2.5 cm of the nursery container protruded through the lid. The LCU was designed to track total N release from CRFs without confounding effects of plant uptake or N immobilization. Total N released between any two sampling periods is determined by multiplying the N concentration in a leachate subsample × total leachate volume. The LCU were placed in a container nursery area with overhead irrigation. LCU were thoroughly leached before sampling the leach solution. To study the effects of substrate on N leach rates, Osmocote 18.0N–2.6P–9.9K (8 to 9 months 21 °C) was incorporated at 1.8 kg N/m3 using a locally available, bark-based substrate or medium-grade quartz sand. The experiment was conducted at Scotts Research locations in Apopka, Fla., and Marysville, Ohio. Osmocote incorporated into either a bark-based substrate or sand resulted in similar N release profiles. Although substrate did not affect N leach rate, quartz sand was recommended as the substrate in the leach collection system for polymer-coated CRFs. Quartz sand is chemically and biologically inert, does not immobilize nutrients and has low ion exchange capacity compared to bark-based potting substrates. More than 90% of the total nitrogen applied from Osmocote was recovered from leachate and unreleased N in fertilizer granules. This research has demonstrated the leach collection system as a reliable means to quantify nitrogen release rate of a polymer-coated CRF under nursery conditions. The LCU, when used with a crop plant, allows nutrient budget and nutrient uptake efficiency to be determined for CRFs.
Publisher
American Society for Horticultural Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献