Blue versus Red Light Can Promote Elongation Growth Independent of Photoperiod: A Study in Four Brassica Microgreens Species

Author:

Kong Yun,Kamath Devdutt,Zheng Youbin

Abstract

An elongated stem has beneficial effects on microgreen production. Previous studies indicate that under 24-hour light-emitting diode (LED) lighting, monochromatic blue light, compared with red light, can promote plant elongation for some species. The objective of this study was to investigate whether shortened photoperiod can change blue vs. red light effects on elongation growth. The growth and morphology traits of arugula (Brassica eruca, ‘Rocket’), cabbage (Brassica oleracea, unknown variety name), mustard (Brassica juncea, ‘Ruby Streaks’), and kale (Brassica napus, ‘Red Russian’) seedlings were compared during the stage from seeding to cotyledon unfolding under two light quality × two photoperiod treatments: 1) R, monochromatic red light (665 nm) and 2) B, monochromatic blue light (440 nm) using continuous (24-hour light/0-hour dark) or periodic (16-hour light/8-hour dark) LED lighting. A photosynthetic photon flux density of ≈100 μmol·m−2·s−1 and an air temperature of ≈22 °C was used for the preceding treatments. After 7 to 8 days of lighting treatment, regardless of photoperiod, B promoted elongation growth compared with R, as demonstrated by a greater stem extension rate, hypocotyl length, or petiole length in the tested microgreen species, except for mustard. The promotion effects on elongation were greater under 24- vs. 16-hour lighting in many cases. Among the tested species, mustard showed the lowest sensitivity in elongation response to B vs. R, which was independent of photoperiod. This suggests that the blue-light-promoted elongation is not specifically from 24-hour lighting, despite the varying promotion degree under different photoperiods or for different species. The elongation growth promoted by blue LED light under a photoperiod of either 24 hours or 16 hours can potentially benefit indoor production of microgreens.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3