Stability of Yield and Yield Components of Pepper (Capsicum annuum), and Evaluation of Publicly Available Predictive Meteorological Data in East and Southeast Asia

Author:

Barchenger Derek W.,Clark Robert A.,Gniffke Paul A.,Ledesma Dolores R.,Lin Shih-wen,Hanson Peter,Kumar Sanjeet

Abstract

Multilocation trials are important for breeding programs to identify high-yielding, adapted lines for a wide range of environments. In this study, we evaluated yield and yield components (fruit weight, fruit length, and fruit width) as well as days to 50% anthesis and fruit maturity of the 10 chili pepper lines in the International Chili Pepper Nursey 15 (ICPN15) distributed by the World Vegetable Center to interested cooperators worldwide. Performance data of the ICPN15 entries were received from collaborators evaluating the set in seven different environments in five countries (Indonesia, South Korea, Thailand, Taiwan, and Vietnam). Significant genotype-by-environment (G × E) interactions were detected for all traits evaluated. Additive main effect and multiplicative interaction analyses indicated high environmental influence on yield, days to 50% anthesis, and maturity, whereas genotype was the greatest contributor to variability in the market-driven yield components of fruit length, width, and weight. Four lines (ICPN15-4, -5, -7, and -10) were identified as highly stable and could serve as sources of yield and yield component stability in either short fruit market segments (ICPN15-4) or long fruit market segments (ICPN15-5, -7, and -10). We attempted to used publicly available weather data to help in explaining the source of the environmental variability; however, differences between analyzed and observed weather were too different to be useful. This is evidence that weather data should be collected at each testing environment in future studies. This study provides a basis for future studies in the stability of important horticultural traits in pepper, and highlights the need for further work in this area.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3