Genetics and Breeding of Early Blight Resistance in Tomato

Author:

Foolad Majid R.,Sharma Arun,Ashrafi Hamid,Lin Guoyang

Abstract

Early blight (EB), caused by the fungus Alternaria solani, is a destructive disease of tomato (Lycopersicon esculentum) worldwide. Sources of genetic resistance have been identified within related wild species, including green-fruited L. hirsutum and red-fruited L. pimpinellifolium. We have employed traditional protocols of plant breeding and contemporary molecular markers technology to discern the genetic basis of EB resistance and develop tomatoes with improved resistance. Backcross breeding has resulted in the development of germplasm with improved resistance; however, linkage drag has been a major obstacle when using L. hirsutum as a donor parent. To identify and map QTLs for EB resistance, we used several filial and backcross populations derived from interspecific crosses between L. esculentum and either L. hirsutum or L. pimpinellifolium. In each population, an average of seven resistance QTLs were detected. While similar QTLs were detected in different generations of the same cross, generally different QTLs were identified in populations derived from different crosses. The results suggested stability of QTLs across environments and generations but variation in QTLs in different interspecific populations. It is expected that marker-assisted pyramiding of QTLs from different sources results in development of germplasm with strong and durable resistance. Further inspection of the results led to the identification and selection of six QTLs with stable and independent effects for use in marker–assisted selection (MAS). However, to facilitate “clean” transfer and pyramiding of these QTLs, near-isogenic lines (NILs) containing individual QTLs in a L. esculentum background should be developed.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3