Measuring Transpiration Rates of Tomato and Other Detached Fruit

Author:

Shirazi Ahmad,Cameron Arthur C.

Abstract

A method was developed to measure transpiration rates and apparent water-vapor permeability coefficients (P'H2O) of detached fruit using an analytical balance equipped with a humidity chamber, wide-range humidity-generating and sensing devices, and a datalogger. The system was designed to monitor weight changes with time and, hence, weight loss of individual fruit during exposure to specific relative humidities (RHs) and temperatures. Weight loss was corrected for loss due to respiratory exchange of 02 and CO2 before calculating P'H2O. Values of P'H2O for tomatoes obtained using this method over periods of 5 minutes to 24 hours ranged from 3 to 12 nmol·cm-2·s-1·kPa-1 at 20C, depending on the experimental conditions. These values are similar to previously published values and to those obtained in a conventional weight-loss experiment, which involved intermittent weighing. P'H20 for tomatoes dropped ≈15% in 24 hours. P'H20 increased with a transient increase in RH; the extent of the increase was variable from fruit to fruit, ranging from 5% to 100% over 30% to 90% RH. The change was reversible in that P'H2O increased and decreased within minutes following shifts in RH. Similar changes were found for strawberry P'H20. The increase in P'H2O may be due, in part, to a direct effect of water vapor on the water transport properties of the cuticular polymer and surface temperature depression as a result of evaporative cooling. At 50% RH and 20C, water vapor diffuses from tomatoes 50 times faster than O2 enters on a molar basis. This information will be useful for modeling RH changes in modified-atmosphere packages.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3