Lavandula angustifolia Growth and Physiology Is Affected by Substrate Type and Depth When Grown under Mediterranean Semi-intensive Green Roof Conditions

Author:

Kotsiris George,Nektarios Panayiotis A.,Paraskevopoulou Angeliki T.

Abstract

Green roofs have received increased interest as a result of their environmental, social, and economic benefits. The present study aims to evaluate suitable, lightweight substrates for the installation of semi-intensive-type green roofs and their effects on Lavandula angustifolia growth and physiological status under Mediterranean climatic conditions. The study was conducted in field containers (1.2 × 1.2 m), and treatments included the use of two depths (20 cm or 30 cm) and three different substrates: 1) pumice (Pum) mixed with peat (P) and zeolite (Z) in a volumetric proportion of 65:30:5 (Pum65:P30:Z5); 2) pumice mixed with compost (C) and zeolite in a volumetric proportion of 65:30:5 (Pum65:C30:Z5); and 3) sandy loam soil (S) mixed with perlite (Per) and zeolite in a volumetric proportion of 30:65:5 (S30:Per65:Z5). Each experimental plot was planted with four plants of L. angustifolia. The physical and chemical characteristics of the substrates and the in situ substrate moisture levels were determined. Plant growth was determined by the growth index and root dry weight, whereas the plant physiological status during the stressful summer period was determined by chlorophylla+b content and stomatal resistance. It was found that the bulk density of all of the substrates was less than 0.8 g·cm−3, whereas the water retention of substrate S30:Per65:Z5 was greater than the other two substrates at all tensions. Substrate depth was the most influential factor; therefore, the deeper substrates (30 cm) provided higher growth indices and root dry weight, increased total chlorophyll content, and reduced leaf stomatal resistance compared with the shallower substrate depth of 20 cm. Differences between substrate types were smaller compared with those of substrate depth. In spring, the growth index in substrate Pum65:C30:Z5 was larger but not in the summer when the growth index of substrates S30:Per65:Z5 and Pum65:P30:Z5 exceeded that of the substrate amended with compost until the end of the study. In late summer, the plant total chlorophyll content decreased in all substrates, whereas substrate Pum65:C30:Z5 exhibited increased stomatal resistance compared with the other two substrates at the same period. It was concluded that L. angustifolia could be grown successfully in semi-intensive Mediterranean green roofs at a substrate depth of 20 cm, but its growth and tolerance to the harsh summer conditions would improve at a substrate depth of 30 cm.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3