Response of Weeds and Ornamental Plants to Potting Soil Amended with Dried Distillers Grains

Author:

Boydston Rick A.,Collins Harold P.,Vaughn Steven F.

Abstract

This research evaluated the use of dried distiller grains with solubles (DDGS) as a soil amendment to suppress weeds in container-grown ornamentals. DDGS is a byproduct of ethanol produced from corn, and developing new uses for DDGS could increase the profitability of ethanol production. Adding DDGS to a commercial pine bark potting mix reduced emergence and growth of common chickweed (Stellaria media) at concentrations of 5% (by weight) or greater and annual bluegrass (Poa annua) at concentrations of 10% (by weight) or more. Herbicidal activity of DDGS was maintained in methanol-extracted DDGS. Rosa hybrid ‘Red Sunblaze’, Phlox paniculata ‘Franz Schubert’, and Coreopsis auriculata ‘Nana’ transplanted into potting soil amended with 20% by weight DDGS were severely stunted and nearly all plants died. Plants survived when transplanted into potting soil containing 10% DDGS by weight, but growth was greatly stunted and flowering of rose and coreopsis was reduced. Addition of 20% DDGS decreased the C:N ratio from 90:1 to 24:1 for the potting mix and from 23:1 to 10:1 for a soil. The decrease in C:N ratio resulted in a twofold increase in microbial respiration at 3 d and 14 d of incubation for both the potting mix and soil. As a result of the phytotoxicity observed on ornamentals transplanted into DDGS-amended potting soil, subsequent studies evaluated surface-applied DDGS to suppress weeds. DDGS applied at 400 g·m−2 or less to the soil surface at transplanting did not reduce emergence or growth of common chickweed or annual bluegrass. DDGS applied at 800 and 1600 g·m−2 to the surface of transplanted ornamentals reduced number of annual bluegrass by 40% and 57% and common chickweed by 33% and 58%, respectively, without injury to transplanted ornamentals. DDGS may be useful for reducing weed emergence and growth in container-grown ornamentals applied to the soil surface at transplanting.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3