Direct Measurement of Sweetpotato Surface Area and Volume Using a Low-cost 3D Scanner for Identification of Shape Features Related to Processing Product Recovery

Author:

Villordon Arthur,Gregorie Jeffrey C.,LaBonte Don

Abstract

The growing demand for sweetpotato French fry and other processed products has increased the need for producing storage roots of desired shape profile (i.e., blocky and less tapered). Length-width ratio (LW) is the current de facto standard for characterizing sweetpotato shape. Although LW is sensitive and descriptive of some types of shape variability, this index may be inadequate to measure taper and other subtle shape variations. Prior work has shown that surface area (SA) and volume (VOL) are important shape descriptors but current direct measurement methods are tedious, inconsistent, and often destructive. A low-cost three-dimensional (3D) scanner was used to acquire digital 3D models of 210 U.S. No. 1 grade sweetpotato storage roots. The 3D models were imported into Meshmixer, a free software for cleaning and processing 3D files. Processing steps included gap filling and rendering the models water-tight to facilitate VOL measurements. The software includes a tool that enables automatic measurements of length (L), width (W), SA, and VOL. LW and SA-VOL ratio (SAVOL) were subsequently calculated. Separately, a digital caliper was used for manual measurements of L and W. The shrink-wrap method was used to measure SA, and water displacement was used to measure VOL. 3D scanner-based and manual L measurements showed high correlation, whereas VOL was lowest. Principal component analysis (PCA) of 3D scanner-based measurements showed that the first two principal components (PCs) accounted for 96.2% of the total shape variation in the data set, named Ib3D. The first PC accounted for 62.15% of the total variance, and captured variation in storage root shape through changes in VOL, SA, SAVOL, and W. The second PC accounted for 34.4% of the variance, and the main factors were LW and L. Most storage root samples that were classified as processing types were located in the fourth quadrant. The methods described in this work to nondestructively acquire 3D models of sweetpotato also can be adopted for analyzing shape in other horticultural produce like fruits, vegetables, tubers, and other storage roots that meet the specifications for 3D scanning. The data support the hypothesis that knowledge of variables that determine storage root L and W can lead to the development of methods and approaches for enhanced processing product recovery and size assortment for fresh market.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3