Author:
Craft Jordan M.,Baldwin Christian M.,Philley Wayne H.,McCurdy James D.,Stewart Barry R.,Tomaso-Peterson Maria,Blythe Eugene K.
Abstract
Traditional hollow-tine (HT) aerification programs can cause substantial damage to the putting green surface resulting in prolonged recovery. Despite the growing interest in new and alternative aerification technology, there is a lack of information in the literature comparing new or alternative technology with traditional methods on ultradwarf bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis (Burtt-Davy)] putting greens. Therefore, the objective of this research was to determine the best combination of dry-injection (DI) cultivation technology with modified traditional HT aerification programs to achieve minimal surface disruption without a compromise in soil physical properties. Research was conducted at the Mississippi State University golf course practice putting green from 1 June to 31 Aug. 2014 and 2015. Treatments included two HT sizes (0.6 and 1.3 cm diameter), various DI cultivation frequencies applied with a DryJect 4800, and a noncultivated control. The HT 1.3 cm diameter tine size had 76% greater water infiltration (7.6 cm depth) compared with the DI + HT 0.6 cm diameter tine size treatment. However, DI + HT 0.6 cm diameter tine size had greater water infiltration at the 10.1 cm depth than the noncultivated control. Results suggest a need for an annual HT aerification event due to reduced water infiltration and increased volumetric water content (VWC) in the noncultivated control treatment. It can be concluded that DI would be best used in combination with HT 1.3 or 0.6 cm diameter tine sizes to improve soil physical properties; however, the DI + HT 0.6 cm diameter tine size treatment resulted in minimum surface disruption while still improving soil physical properties compared with the noncultivated control.
Publisher
American Society for Horticultural Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献