Russeting and Relative Growth Rate Are Positively Related in ‘Conference’ and ‘Condo’ Pear

Author:

Scharwies Johannes Daniel,Grimm Eckhard,Knoche Moritz

Abstract

Russeting is an important surface disorder in fruit and mechanical growth stresses, among other factors, are considered causal in russet induction. To test this hypothesis, fruit development and russeting were monitored on a whole fruit level and also in the calyx, cheek, and neck region of developing ‘Conference’ and ‘Condo’ pear fruit (Pyrus communis L.). To quantify growth, the pear fruit was geometrically modeled as approximating to half of a prolate spheroid for the calyx region and two truncated cones for the cheek and neck regions, respectively. Mass and surface area of ‘Conference’ and ‘Condo’ fruit increased in a single sigmoidal pattern with time. Fruit volume, determined by buoyancy, using a hydrostatic balance, and the Archimedes’ principle was closely related to that predicted by the model from fruit geometry. Growth rates of surface area in ‘Conference’ and ‘Condo’ peaked at ≈90 and 100 days after full bloom (DAFB), respectively, and were highest in the calyx followed by the cheek and neck regions. Relative growth rates, calculated by dividing growth rates by the absolute surface area present at that time, were at maximum during early development and thereafter continuously declined. In general, relative growth rates were highest for the cheek region, intermediate in the calyx, and lowest for the neck. ‘Conference’ fruit were always more russeted than ‘Condo’ with russeting generally decreasing from calyx to cheek and neck. Furthermore, russeting increased rapidly in ‘Conference’ during early development until ≈70 DAFB, particularly in the calyx and cheek regions and, to a lesser extent, in the neck region. There was little change in russeting after ≈70 DAFB. Plotting rates of russeting vs. relative growth rates in surface area indicate a positive and common relationship across regions where russeting increased when relative growth rates exceeded 0.03/day. Thus, differential growth rates between regions within ‘Conference’ or ‘Condo’, but not across the two cultivars, accounted for topical differences in russeting.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3