Evaluating Fertilization and Water Practices to Minimize NO3-N Leachate from Container-grown Forsythia

Author:

Alam Mohammed Z.,Chong Calvin,Llewellyn Jennifer,Lumis Glen P.

Abstract

To minimize fertilizer and water use, and NO3-N runoff from container culture, growth, and nutrient status of forsythia (Forsythia ×intermedia Zab. ‘Spring Glory’) in No. 2 containers were compared in response to a controlled-release fertilizer (CRF; Nutricote 18-6-8 100-day at rates of 2, 4, and 6 kg·m−3) and placements (incorporation and topdress) under three irrigation strategies [drip-irrigated low (25% or less) leaching fraction (DrLoLF), hand-sprinkled low leaching fraction (HsLoLF), and hand-sprinkled high (50% or less) leaching fraction (HsHiLF)]. In a coexperiment under drip irrigation only, forsythia response was also examined under incorporation, topdress, and dibble fertilizer placements with the same CRF rates applied as single or split dose. Dibble fertilizer placement was superior to both incorporation and topdress in this order. Maximum growth of forsythia occurred at rates of 4.7 kg·m−3 with dibble. With incorporation and topdress, maximum growth was not achieved even at the 6 kg·m−3 maximum rate tested. Forsythia grew better with incorporated than with topdressed CRF with the DrLoLF treatment. The response was reverse with HsHiLF or showed no differences with HsLoLF. Under drip irrigation, greater concentrations of NO3-N generally leached from incorporation and dibbled containers in this order than from topdress. Less nitrate was leached from the topdressed containers because less was released from the CRF prills. At the 6 kg·m−3 CRF rate, total cumulative NO3-N leachings were 76, 85, and 22 kg·ha−1 (45 × 45-cm container spacing) for dibbling, incorporation, and topdress, respectively, under drip irrigation. Split application of CRF greatly reduced NO3-N in leachate, although plant growth also was reduced as a result of less availability of and uptake of nutrients under this strategy.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3