Trinexapac-ethyl Affects Kentucky Bluegrass Root Architecture

Author:

Beasley Jeffrey S.,Branham Bruce E.,Ortiz-Ribbing Loretta M.

Abstract

Trinexapac-ethyl (TE) [4-(cyclopropyl-a-hydroxy-methylene)-3,5-dioxocyclohexanecarboxylic acid ethyl ester] effects on turfgrass root architecture are not known. It has been postulated that PGR application could cause photoassimilate that is normally used for shoot growth to be funneled to root growth. This study evaluated the effects of a single TE application on kentucky bluegrass (KBG) root and shoot growth for seven weeks. Individual KBG plants were grown in a hydroponic system and harvested weekly. At each harvest, tiller height, tiller number, and color ratings were recorded. Estimates of total root length (TRL), root surface area (SA), and average root diameter were measured using the WinRhizo system. Trinexapac-ethyl reduced plant height for 4 weeks followed by a period of postinhibition growth enhancement. Trinexapac-ethyl increased tiller number over the course of the study and slightly enhanced plant color. Trinexapac-ethyl reduced TRL and SA 48% and 46% at 1 week after treatment (WAT) followed by an accelerated growth rate 1 to 4 WAT. Trinexapac-ethyl had no effect on root diameter. On a tiller basis, TE initially reduced TRL and SA 30% and 31%, respectively. Total root length per tiller and root surface area per tiller were reduced by TE treatment, but by 7 WAT, those differences were no longer significant. Initial reductions in TRL and SA per tiller may reduce tiller competitiveness for water and nutrients. Based on data for TRL and SA per tiller, shoot and root growth must be considered in total to fully understand TE effects on plant growth. Field research is needed to corroborate results from hydroponic-studies and examine the effect of various TE rates and multiple applications on turfgrass root and shoot growth.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3