Wetland Technologies for Nursery and Greenhouse Compliance with Nutrient Regulations

Author:

White Sarah A.

Abstract

The need to protect our water resources and increasing public awareness of the importance of cleaner water for ecological and human health reasons are driving regulations limiting nutrient release from traditionally exempt, non-point source agricultural contributors. Modification of production practices alone may not be adequate to meet regulated nutrient criterion limits for irrigation and stormwater runoff entering surface waters. Three constructed wetland technologies are well suited to help agricultural producers meet current and future regulations. The first two technologies, surface- and subsurface-flow constructed wetlands, have been in use for over 40 years to cleanse various types of wastewater, whereas floating treatment wetlands are an emerging remediation technology with potential for both stormwater and agricultural runoff treatment applications. The mechanisms driving removal of both nitrogen (N) and phosphorus (P) in constructed wetland systems are discussed. Surface-flow constructed wetlands remediate N contaminants from both container nursery and greenhouse production wastewater, whereas P remediation is variable and tied most closely to active plant growth as the constructed wetland ages. Subsurface-flow constructed wetlands effectively remediate N from production wastewater and can be tailored to increase consistency of P remediation through selection of P-sorbing root-bed substrates. Floating treatment wetlands effectively remediate both N and P with a designed surface area of a pond covered depending on the target effluent concentration or regulated total maximum daily load. The choice of treatment technology applied by growers to meet regulated water quality targets should be based on both economic and site-specific considerations.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3