Improved Shoot Organogenesis from Leaf Explants of Highbush Blueberry

Author:

Cao X.,Hammerschlag F.A.

Abstract

As part of a program to develop transgenic highbush blueberry (Vaccinium corymbosum L.) cultivars, studies were conducted to determine optimum conditions for high efficiency shoot regeneration from leaf explants of shoots propagated in vitro. The effects on shoot organogenesis of age of explant source, length of dark treatment, the addition of either thidiazuron (TDZ) at 1 or 5 μm, or zeatin riboside at 20 μm to the regeneration medium, and a photosynthetic photon flux (PPF) of either 18 ± 5 or 55 ± 5 μmol·m–2·s–1 were investigated. A maximum of 13.0, 13.0, 12.6, and 4.6 shoots regenerating per explant for cultivars Duke, Georgiagem, Sierra, and Jersey, respectively, occurred on regeneration medium with zeatin riboside and under a PPF of 55 ± 5 μmol·m–2·s–1. `Duke' regenerated equally well on medium with either zeatin riboside or 1 μm TDZ, whereas the number of shoots per explant for `Georgiagem' and `Sierra' was significantly higher on zeatin riboside. Regeneration of `Duke', `Jersey', and `Sierra' on zeatin riboside was significantly better under a PPF of 55 ± 5 μmol·m–2·s–1 than under 18 ± 5 μmol·m–2·s–1, but the higher PPF inhibited regeneration of `Duke' on 5 μm TDZ. There were no significant differences in percentage of regeneration or the number of shoots per explant from leaf explants derived from either 1-, 2-, or 3-week-old shoot cultures, or when either 1 week or 2 weeks of darkness preceded light treatments. Chemical names used: 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea (thidiazuron, TDZ); 9-(-β-ribofuranosyl)-6-(4-hydroxy-3-methyl-but-2-enylamino)purine (zeatin riboside).

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3