Containerized Onion Transplants: A Management System to Enhance Growth, Yield, and Quality

Author:

Macias-Leon Maria A.,Leskovar Daniel I.

Abstract

In the United States, most short-day onions are direct seeded. With this method, plant stands can be reduced because of extreme temperatures, weed pressure, and soil-borne diseases. Containerized transplants offer an alternative method of stand establishment with less seedling losses while producing uniform bulb sizes and high marketable yield. However, the use of transplants is not a widespread commercial practice because of the high cost of production. This study aims to select the best transplant strategies to improve onion crop performance in semiarid regions of southwest Texas or similar environments. Three sequential transplanting dates of early, mid, and late season (14 Nov., 8 Dec., and 9 Jan.) and two seedling densities of one seed per cell (T1) and three seeds per cell (T3) were evaluated on growth, yield, bulb quality, and phytonutrient content of three onion cultivars, two yellow (‘Caramelo’ and ‘Don Victor’), and one red (‘Lambada’). During early development, late-transplanted onions had an increase in plant height and greater leaf elongation rate than early and midtransplanted onions, whereas early plantings required more days to reach maturity than mid and late plantings. Overall, early and midtransplanting dates resulted in higher yields than late plantings. Although increasing seedling density (T3 vs. T1) did not significantly reduce marketable yield in early plantings, T1 produced a higher number of jumbo and colossal bulb sizes than T3. Onion quality was mostly affected by cultivar and not by transplant strategies. The technique of establishing onions from transplants grown from one plant per cell (T1) or multiple plants (T3) from early November to early December provides a practical and economical alternative to achieve earlier crops, while reducing the length of the production season, as planting date is delayed.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3