Somatic Embryogenesis and Regeneration from Cotyledon Explants of Six Squash Cultivars

Author:

Gonsalves Carol,Xue Baodi,Gonsalves Dennis

Abstract

Six summer squash (Cucurbita pepo L.) cultivars were regenerated via somatic embryogenesis using cotyledons excised from germinated or nongerminated seeds. Genotypes included were zucchini, commercial F1 hybrids, `President', `Seneca Zucchini', `Jade'; the noncommercial inbred line `Caserta Inbred 557311'; and two yellow squash hybrids `Dixie' and `Seneca Butterbar'. Somatic embryogenesis was initiated in induction medium containing 22.62 μm 2, 4-D, and embryos were germinated in maturation medium containing 0.27 μm NAA and 0.23 μm kinetin. Plants were elongated and rooted on basal medium without hormones. All media contained carbenicillin at 500 mg·liter–1. Sixty-one percent of the `Seneca Butterbar' cotyledons produced somatic embryos when kept on induction medium for 10 weeks. Overall, 7% of the initial explants produced plantlets, and regeneration efficiency was calculated as 0.3 plantlets per initial explant. The relative production of plants from cotyledons that were kept on induction medium for different time periods were determined for `Caserta Inbred 557311' and `Seneca Zucchini'. All cotyledons produced somatic embryos after 11 to 17 weeks on induction medium. However, plantlet production was optimal with explants kept on induction medium for 13 weeks for `Seneca Zucchini' and for 15 weeks for `Caserta Inbred 557311', producing an average of 4.5 and 9.3 plants per explant, respectively, from 90% to 70% of the explants. We recovered plants from all six cultivars; thus, our regeneration protocol may be applicable to other genotypes. The high percentage of regenerants obtained indicates that the regeneration method is efficient enough to be adapted successfully to squash transformation experiments. Chemical names used: α-carboxybenzylpenicillin (carbenicillin); 2,4-dichlorophenoxyacetic acid (2,4-D); 6-furfurylaminopurine (kinetin); α-napthaleneacetic acid (NAA).

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3