Glomus intraradices Enhances Growth and Gas Exchange of Lolium perenne Seedlings in Petroleum-contaminated Soil

Author:

Alarcon* Alejandro,Davies Frederick T.,Reed David Wm.,Autenrieth Robin L.,Zuberer David A.

Abstract

Arbuscular mycorhizal fungi (AMF) have been used in phytoremediation and can increase tolerance and growth of plants in contaminated environments. However, little is known about the influence AMF on plant growth to organic contaminants in soils. A greenhouse experiment was conducted to study the response of seedlings of annual ryegrass (Lolium perenne L.) var. Passerel Plus inoculated with Glomus intraradices Schenck & Smith in soil contaminated with sweet Arabian median crude oil. Inoculated (AMF) and non-inoculated (Non-AMF) plants were established in an pasteurized and artificially contaminated sandy loam soil with 0; 3000; 15,000; or 45,000 mg of petroleum kg-1 soil (n = 20). Plants were inoculated with 500 spores of G. intraradices (Mycorise® ASP, PremierTech Biotechnologies, Canada). After 90 days, plant growth of AMF or Non-AMF plants, was drastically affected at all petroleum concentrations. However, G. intraradices enhanced plant growth, chlorophyll content, and gas exchange of plants grown at 3,000 mg kg-1 compared to Non-AMF plants. Total leaf area, chlorophyll, and net photosynthesis were also higher (+380%, +63%, and +81%, respectively) at this concentration. Water use efficiency (net photosynthesis/stomatal conductance) of AMF-plants was three times greater than Non-AMF at 3,000 mg·kg-1. At concentrations of 15,000 and 45,000 mg kg-1 AMF did not have effect, but colonization was observed (11.8% and 18.6%, respectively). These values of colonization were significantly lower than those observed in AMF-plants at 0 (42.5%) and 3,000 mg·kg-1 (55.6%). Studies are currently being conducted to understand the physiological role of AMF on plants exposed to organic contaminants.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3