Effects of Host Plant Resistance and Fungicides on Severity of Cucumber Downy Mildew

Author:

Call Adam D.,Wehner Todd C.,Holmes Gerald J.,Ojiambo Peter S.

Abstract

Cucurbit downy mildew caused by the oomycete Pseudoperonospora cubensis (Berk. And Curt) Rostov is a major disease of cucumber (Cucumis sativus L.) (Palti and Cohen, 1980) globally. Chemical control of downy mildew is necessary to achieve high yields in the absence of adequate host plant resistance. Most of the currently grown cultivars have some resistance to downy mildew. Before the resurgence of the disease in 2004, host plant resistance was sufficient to control the disease without fungicide use, and downy mildew was only a minor problem on cucumber. There are currently no cultivars that show resistance at a level equal to that observed before 2004. However, differences in resistance exist among cultivars, ranging from moderately resistant to highly susceptible. In this study, we evaluated the disease severity and yield of four cucumber cultivars that differed in disease resistance and were treated with fungicide programs representing a range of efficacy levels. The experiment was a split plot design with six replications and four years. Disease was evaluated as chlorosis, necrosis, and reduction in plant size on a 0 to 9 scale. Cultigen had a large effect in all four years. Fungicide has a smaller effect on resistance component traits and a larger effect on yield traits. The effects of cultivar resistance and fungicides appear to be additive until a threshold where maximum yield is reached. Highly resistant cultigens such as PI 197088 required only the least effective fungicides to achieve highest yields, whereas moderately resistant cultigens required a more effective fungicide to reach a similar level of yield. Susceptible cultigens did not achieve high yield even with the most effective fungicide treatments. It is likely that, even as highly resistant cultivars are released, growers will need to continue a minimal fungicide program to achieve maximum yield.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3