Comparative Mechanical Harvest Efficiency of Six New Mexico Pod–type Green Chile Pepper Cultivars

Author:

Joukhadar Israel S.1,Walker Stephanie J.1,Funk Paul A.2

Affiliation:

1. 1Extension Plant Sciences, New Mexico State University, P.O. Box 30003, MSC-3AE, Las Cruces, NM 88003

2. 2U.S. Department of Agriculture, Agriculture Research Station, Southwestern Cotton Ginning Laboratory, P.O. Box 578, Mesilla Park, NM 88047

Abstract

New mexico pod–type green chile (Capsicum annuum) is one of New Mexico’s leading horticultural commodities. Cultivated acreage of green chile in New Mexico is threatened because of the high cost and insufficiently available labor for hand harvest. Therefore, mechanization is necessary to sustain the industry. Successful mechanization depends on harvester design coupled with plant architecture that optimizes harvest yield and quality. Harvested green fruit must be whole, unbroken, and unblemished for fresh and processed markets, so harvester design and plant architecture must maximize yield while minimizing fruit damage. In two trials conducted at the New Mexico State University Agricultural Science Center in Los Lunas, six cultivars (AZ-1904, Machete, PHB-205, E9, PDJ.7, and RK3-35) were evaluated for plant architecture and harvest efficiency with a double, open-helix mechanical harvester with two counter-rotating heads. Cultivars were direct seeded on 17 Apr. 2015 and 14 Apr. 2016 and managed according to standard production practices. Plant architecture traits, plant width, plant height, height to first primary branch, distance between first primary branch and first node, basal stem diameter, and number of basal branches were measured before harvest. Mechanical harvest yield components, which included marketable fruit, broken fruit, ground fall losses, unharvested fruit remaining on branches, and nonpod plant material, were assessed after once-over destructive harvests on 2 Sept. 2015 and 31 Aug. 2016. Fruit width, fruit length, and pericarp thickness were measured from a representative sample of 10 marketable fruit. In 2015, ‘AZ-1904’ and ‘PDJ.7’ had significantly (P ≤ 0.05) more marketable yield than ‘Machete’ that had the least marketable yield. No statistically significant differences were found in marketable yield in 2016. When both years were combined, ‘PDJ.7’ had significantly more nonpod plant material harvested and the plants were taller than all other cultivars. We found mechanical harvest performance to be significantly affected by plant height, with shorter plants yielding less marketable fruit. Despite differences in fruit wall thickness, no significant differences were measured in broken fruit. In 2015, ‘AZ-1904’ had significantly less basal branches per plant, reducing obstruction for the picking mechanism. Harvest efficiencies (marketable harvested fruit yield as a percentage of total plot yields) ranged from 64.6% to 39.3% during this 2-year trial, with the highest harvesting cultivars PDJ.7 and AZ-1904. In the future, all new mexico pod–type green chile breeding efforts for mechanical harvest must incorporate desirable plant architecture traits to increase harvest efficiencies.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3