A Modified Nutrient Film Technique System Offers a More Uniform Nutrient Supply to Plants

Author:

Puerta Alejandro R.,Sato Suguru,Shinohara Yutaka,Maruo Toru

Abstract

In nutrient film technique (NFT) vegetable production, the use of low-concentration nutrient solutions might lead to a nutrient concentration gradient along the bed, which can translate into nonuniform plant growth. The authors modified a conventional NFT system (cNFT) and propose a modified NFT (mNFT) that enables the production of lettuce (Lactuca sativa) plants of uniform fresh weight along elongated cultural beds. Two experiments were carried out to compare the systems when long cultural beds are used (18 m) in terms of uniformity of plant and nutrient solution characteristics. The results indicated that fresh weight of plants in cNFT decreased as the distance from the nutrient inlet increased, whereas no such trend was observed in mNFT. Leaf nitrate concentration in mNFT was uniform, whereas it was higher near the outlet of cNFT. Ascorbic acid concentration was also uniform in mNFT, but it was found to be lower near the outlet of cNFT. During Expt. 2, the oxygen content along the bed decreased from inlet to outlet in cNFT; however, in mNFT, it remained relatively constant at all sampling positions. Regarding the concentration of the nutrient solution along beds, no significant differences were found between inlet and outlet in both systems. It is suggested that the lower concentration of oxygen found at the outlet of cNFT might have reduced nutrient uptake, thus attenuating the difference in concentration between inlet and outlet. The temperatures of the nutrient solution along mNFT during Expt. 2 tended to be slightly lower than those of cNFT. However, temperatures were still too high and plant growth was negatively affected. The results of this study demonstrate that plants of uniform size and quality can be achieved in long cultural beds (up to 18 m long) supplied with a low-concentration fertilizer solution by using the proposed mNFT.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3