Exogenous Applications of Moringa Leaf Extract and Cytokinins Improve Plant Growth, Yield, and Fruit Quality of Cherry Tomato

Author:

Basra Shahzad M.A.1,Lovatt Carol J.1

Affiliation:

1. 1Department of Botany and Plant Sciences-072, University of California, Riverside, CA 92521-0124

Abstract

Growth-promoting properties of moringa (Moringa oleifera) leaves were investigated for potential use in crop production by comparing the efficacy of bimonthly foliar and root applications of a moringa leaf extract [MLE (3.3% w/v)] with the cytokinins 6-benzyladenine (6-BA) and trans-zeatin (t-Z), each at 25 mg·L−1, to increase plant growth, flowering, yield, fruit size, and fruit quality of ‘Super Sweet 100’ cherry tomato (Solanum lycopersicum). Foliar-applied t-Z and root-applied MLE increased canopy biomass (P ≤ 0.01) and root- and foliar-applied MLE increased lateral vegetative shoot number (P ≤ 0.001) and plant height (P ≤ 0.001) relative to untreated control plants. Only foliar-applied MLE increased floral shoot number compared with untreated control plants (P ≤ 0.001). Plants in all treatments, except root-applied 6-BA, produced more flowers than untreated control plants (P ≤ 0.001). Plants receiving root-applied t-Z produced the greatest number of flowers followed by plants receiving root-applied MLE. Cherry tomato plants treated with root-applied t-Z or MLE produced the greatest number of fruit per plant and significantly more than untreated control plants (P ≤ 0.001). Foliar-applied 6-BA and MLE and root-applied t-Z and MLE increased yield as grams of fruit per plant compared with the untreated control (P ≤ 0.01). Foliar- and root-applied MLE increased fruit concentrations of soluble sugars (P ≤ 0.001), protein (P ≤ 0.001), antioxidants (P ≤ 0.001), and lycopene (P ≤ 0.001) compared with fruit from untreated control plants. Foliar- and/or root-applied MLE resulted in the greatest leaf concentrations of protein (P ≤ 0.01), proline (P ≤ 0.01), arginine (P ≤ 0.01), and total antioxidants (P ≤ 0.05), which were all significantly greater than the concentrations in leaves from untreated control plants. The results of this single experiment provide evidence suggesting that MLE warrants further research as an inexpensive growth promoter for enhancing tomato plant biomass, yield, and fruit quality, especially in organic crop production, which prohibits the use of many commercial synthetic plant growth regulators.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3