Effects of Shading Using a Retractable Liquid Foam Technology on Greenhouse and Plant Microclimates

Author:

Aberkani Kamal12,Hao Xiuming2,de Halleux Damien3,Dorais Martine4,Vineberg Stephen5,Gosselin André1

Affiliation:

1. 1Laval University, Horticulture Research Center, 2450 Boulevard Hochelaga, Quebec, QC, Canada, G1V 0A6

2. 2Agriculture and Agri-Food Canada, Harrow, Ontario, Canada, N0R 1G0

3. 3Département des Sols et de Génie Agro-alimentaire, Université Laval, Quebec, QC, Canada, G1V 0A6

4. 4Agriculture and Agri-Food Canada, Pavillon Envirotron, Quebec, QC, Canada, G1V 0A6

5. 5Sunarc of Canada Inc., 1980 Sherbrooke Street West, Montreal, Quebec, Canada, H3H 1E8

Abstract

Climate control is an important aspect of greenhouse crop management. Shading is one popular method for reducing excess solar heat radiation and high air temperatures in the greenhouse during the summer season. A new innovative technology has recently been developed and is based on the injection of liquid foam between the double layers of polyethylene of the greenhouse roof. The foam can be used as a shading method during the warm days of the summer. This is the first investigation into the effect of shading using the liquid foam technology on greenhouse and plant microclimates. Our research was conducted over 2 years in two different areas of Canada. Experimental greenhouses were retrofitted with the new technology. Tomato (Solanum lycopersicum) and sweet pepper (Capsicum annuum) were transplanted. Two shading strategies were used: 1) comparison of a conventional nonmovable shading curtain to the liquid foam shading system and application of liquid foam shading based only on outside global solar radiation; and 2) application of foam shading based on both outside global solar radiation and greenhouse air temperature. Data on the greenhouse microclimate (global solar radiation, air temperature, and relative humidity), the canopy microclimate (leaf and bottom fruit temperatures), and ventilation (opening/closing) were recorded. Our study showed that the retractable liquid foam technology improved greenhouse climate. Under some conditions (very sunny and hot days), a large difference in air temperature (up to 6 °C) was noted between the unshaded and shaded greenhouses as a result of liquid foam application (40% to 65% shading). Foam shading also increased relative humidity by 5% to 12%. Furthermore, bottom fruit temperatures stayed cooler 3 h after shading treatment was stopped. As well, a reduction in ventilation needs was observed with liquid foam shading.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3