Factors Affecting Nutrient Availability, Placement, Rate, and Application Timing of Controlled-release Fertilizers for Florida Vegetable Production Using Seepage Irrigation

Author:

Carson Luther C.,Ozores-Hampton Monica

Abstract

This publication summarizes the factors influencing controlled-release fertilizer (CRF) nutrient release, CRF placement, CRF rate, and CRF application timing for the two major seepage-irrigated vegetable production systems (plasticulture and open-bed) in Florida. One of several best management practices for vegetable production, CRF helps growers achieve total maximum daily loads (TMDLs) established in Florida under the Federal Clean Water Act. Several factors intrinsic to CRF and to the vegetable production systems affect CRF nutrient release, making implementation of CRF fertility programs challenging. Increasing or decreasing soil temperature increases or decreases nutrient release from CRF. Soil moisture required for uninhibited plant growth is within the soil moisture range for optimum CRF nutrient release. CRF substrate affects nutrient release rate, which is inversely related to coating thickness and granule size. Soil microbes, soil texture, and soil pH do not influence nutrient release rate. Field placement of CRFs in seepage-irrigated, plasticulture, and open-bed production should be in the bottom mix at bed formation and soil incorporated or banded at planting, respectively. In plasticulture production systems, soil fumigation and delayed planting for continuous harvest may add a 14- to 21-day lag period between fertilization and planting, which along with different season lengths will influence CRF release length selected by growers. Using a hybrid fertilizer system in plasticulture production or incorporating CRF at planting in open-bed production allows for up to a 25% reduction in the nitrogen (N) rate needed.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3