Traditional and New Approaches to Irrigation Scheduling in Vegetable Crops

Author:

Pardossi Alberto,Incrocci Luca

Abstract

Intensive vegetable cropping systems use large amounts of water and nutrients. Excess application of water and nutrients results in economic losses (higher fertilizers and pumping costs) and contributes to nutrient leaching and environmental degradation. Increasing nutrient use efficiency (NUE) and water use efficiency (WUE) should be a priority for sustainable horticulture. This increased NUE, WUE, or both depend on the utilization of efficient irrigation technology, including appropriate methods for irrigation scheduling (IS).Various methods are available for IS based on determination of crop water balance (weather-based method), soil/substrate moisture level, or plant water relations. Rather than discussing the physical and biological basis of irrigation management, this article focuses on currently available irrigation control devices for open-field and greenhouse production systems, with particular emphasis on soil moisture sensors (SMSs). SMS regulates the frequency of irrigation and, possibly, the water dose by continuously monitoring volumetric water content (θ) or matrix potential (ψm) of the growing media. A new generation of dielectric SMS has been developed to measure both θ and the electrical conductivity (EC) of pore water in soil and artificial media. This provides the possibility of controlled fertigation based on measured EC. Despite the development in IS, in most regions worldwide, especially in less developed countries, many growers still rely on personal experience for determining crop water requirements and the timing of irrigation. Therefore, the main constraints to the improvement of irrigation efficiency are related to the overall cost of these technologies and to the policies adopted for their dissemination and transfer to professional growers.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3