Determining Optimal Bulb Storage and Production Methods for Successful Forcing of Cut Pineapple Lily

Author:

Carlson Alicain S.,Dole John M.

Abstract

Pineapple lily (Eucomis hybrids) has long, striking inflorescences that work well as a cut flower, but information is needed on proper production methods and postharvest handling protocols. The objective of this study was to determine the effects of bulb storage temperature and duration, production environment, planting density, and forcing temperatures on cut flower production of ‘Coral’, ‘Cream’, ‘Lavender’, and ‘Sparkling Burgundy’ pineapple lily. Stem length was greater in the greenhouse than the field and at the low planting density. Plants in the field at the low planting density had the shortest stem length for ‘Coral’ and ‘Cream’, but still produced marketable lengths of at least 30 cm. Planting density did not affect ‘Lavender’ and ‘Sparkling Burgundy’ stem length or number of marketable stems. The productivity (number of marketable stems per bulb) was affected only by planting density for ‘Coral’ and planting environment for ‘Cream’. Differences in stem quality and productivity differed for each cultivar and planting density over the next two seasons. The productivity of ‘Coral’ increased significantly from year to year, while the productivity of ‘Cream’ only significantly increased between the first and second years. The low planting density resulted in slightly more stems per bulb for ‘Coral’ over the next two seasons. Emergence after bulb storage treatments was highest in treatments where the bulbs were not lifted from the substrate and were subsequently grown at 18 °C. Bulbs grown in the warmest (18 °C) production temperature flowered soonest and had shorter stem lengths. For earliest flowering, bulbs should be stored in substrate in cool temperatures of at least 13 °C and forced at warm temperatures of at least 18 °C.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3