Author:
Ariyarathne H.M.,Coyne D.P.,Jung G.,Skroch P.W.,Vidaver A.K.,Steadman J.R.,Miklas P.N.,Bassett M.J.
Abstract
Diseases of beans (Phaseolus vulgaris L.) are primary constraints affecting bean production. Information on tagging and mapping of genes for disease resistance is expected to be useful to breeders. The objectives of this study were to develop a random amplified polymorphic DNA (RAPD) marker linkage map using 78 F9 recombinant inbred (RI) lines derived from a Middle-American common bean cross Great Northern Belneb RR-1 [resistant to common bacterial blight (CBB) and halo blight (HB)] × black A 55 [dominant I gene resistance to bean common mosaic potyvirus] and to map genes or QTL (quantitative trait loci) for resistance to CBB, HB, BCMV (bean common mosaic virus), and BCMNV (bean common mosaic necrosis virus) diseases. The RI lines were evaluated for resistance to leaf and pod reactions to Xanthomonas campestris pv. phaseoli (Xcp) (Smith Dye) strain EK-11, leaf reactions to two Pseudomonas syringae pv. phaseolicola (Psp) (Burkholder) Young et al. (1978) strains HB16 and 83-Sc2A, and BCMV strain US-5 and BCMNV strain NL-3. The linkage map spanned 755 cM, including 90 markers consisting of 87 RAPD markers, one sequence characterized amplified region (SCAR), the I gene, and a gene for hypersensitive resistance to HB 83-Sc2A. These were grouped into 11 linkage groups (LG) corresponding to the 11 linkage groups in the common bean integrated genetic map. A major gene and QTL for leaf resistance to HB were mapped for the first time. Three QTL for leaf reactions to HB16 were found on linkage groups 3, 5, and 10. Four regions on linkage groups 2, 4, 5, and 9, were significantly associated with leaf reactions to HB strain 83-Sc2A. The gene controlling the hypersensitive reaction to HB 83-Sc2A mapped to the same region as the QTL on LG 4. The I locus for resistance to BCMV and BCMNV was mapped to LG 2 at about 1.4 cM from RAPD marker A10.1750. Five and four markers were significantly associated with QTL for resistance to CBB in leaves and pods, respectively, with four of them associated with resistance in both plant organs. A marker locus was discovered on LG 10, W10.550, which could account for 44% and 41% of the phenotypic variation for CBB resistance in leaves and pods, respectively. QTL for resistance in pod to CBB, leaf resistance to HB, and the I gene were linked on LG 2.
Publisher
American Society for Horticultural Science
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献