Protein Aggregation, Radical Scavenging Capacity, and Stability of Hydrogen Peroxide Defense Systems in Heat-stressed Vinca and Sweet Pea Leaves

Author:

Anderson Jeffrey A.,Padhye Sonali R.

Abstract

Although heat stress injury is known to be associated with membrane dysfunctions, protein structural changes, and reactions of activated forms of oxygen, the underlying mechanisms involved are poorly understood. In this study, the relationships between thermotolerance and hydrogen peroxide (H2O2) defense systems, radical scavenging capacity [based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) reduction], and protein aggregation were examined in vinca [Catharanthus roseus (L.) G. Don `Little Bright Eye'], a heat tolerant plant, and sweet pea (Lathyrus odoratus L. `Explorer Mix'), a heat susceptible plant. Vinca leaves were 5.5 °C more thermotolerant than sweet pea leaves based on electrolyte leakage analysis. Vinca leaf extracts were more resistant to protein aggregation at high temperatures than sweet pea leaf extracts, with precipitates forming at ≥40 °C in sweet pea and at ≥46 °C in vinca. Vinca leaves also had nearly three times greater DPPH radical scavenging capacity than sweet pea leaf extracts. Two enzymatic detoxifiers of H2O2, catalase (CAT) and ascorbate peroxidase (APOX), demonstrated greater activities in vinca leaves than in sweet pea leaves. In addition, CAT and APOX were more thermostable in vinca, compared with sweet pea leaves. However, tissue H2O2 levels did not differ between controls and tissues injured or killed by heat stress in either species, suggesting that H2O2 did not play a direct role in acute heat stress injury in vinca or sweet pea leaves. Greater thermotolerance in vinca, compared with sweet pea, was associated with greater DPPH radical scavenging capacity, indicating that AOS other than H2O2 may be involved in acute heat stress injury.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3